发布时间:2013-06-06 23:16:23 作者: 浏览次数: 次




Full Professor, Pharmaceutical Science, Southwest University, Chongqing, China, 2017-present.






Research Associate, (WPI-AIMR), 2015–2017, Tohoku University


Research Associate, 2013-2014, (WPI-iCeMS), Kyoto University


K S Krishnan Fellow, 2012-2013, BARC 


Postdoctoral Fellow, 2009-2012, Mayo Clinic, Rochester




PhD, 2009, University of Missouri, Columbia,


M.Sc, 2003, IIT Kharagpur  


BSc, 2000, Calcutta University




Research grant awarded by WPI-AIMR, Tohoku University as a Principle investigator, 2016.


Nature’s open innovation challenge award 2015, for the submission of proposal “Novel treatment approach to cure inflammatory bowel disease”.


Juan de la Cierva Fellowship 2014, Government of Spain (University of Barcelona)


Overseas Travel Award for research, 2013, Kyoto University, Japan.


K S KRISHNAN Fellow 2012, BARC, Mumbai.


Steven Research Fellowship Award, 2004, University of Missouri Columbia.


Excellence in Teaching, 2004 was certified by University of Missouri-Columbia program, the state of Missouri College teaching Institute.


Selected Publications


Long, Y.; Deng, S.;1 Wu, Y.; Zhang, Z.; Chen, S.; Gillies, E.; Bhattacharyya, S.; C, Li., Inducible epitope imprinting: ‘Generating’ the required binding site in membrane folate receptor for targeted drug delivery, DOI: 10.1039/C6NR09449J, Nanoscale, 2017, 9, 5394-97.


Bhattacharyya, S.; Kim, K.; Teizer, W. Restoring the processivity of kinesin nano-motors, Adv. Biosys, 2017, 1600034-40.


Bhattacharyya, S.; Kim, K.; Nakazawa, H.; Umetsu, M.; Teizer, W. Altering the microtubule-Tau assembly and dynamic by altering the chemical environment, Integr. Biol, 2016, 8, 1296-1300.


Bhattacharyya, S.; Kim, K.; Nakazawa, H.; Umetsu, M.; Teizer, W. Modulating the microtubule kinesin nanomechanics in the presence of metallic ions, IEEE Nano, 2016.


Long, Y.; Deng, S.;1 Wu, Y.; Zhang, Z.; Chen, S.; Gillies, E.; Bhattacharyya, S.; C, Li., Novel polymeric nanoparticles targeting the lipopolysaccharides of pseudomonas aeruginosa, Int. J. Pharm, 2016, 502 (1-2): 232-41.


Bhattacharyya, S.; Giri, K.; Dong, H.H.; Nicholas, B.J.; Bhattacharya, R.; Sood, A.; Mukherjee, P. Cystathione Beta Synthase Contributes to Advance Ovarian Cancer Progression and Drug Resistance PLoS One, 2013, 8(11), e79167.


Arvizo, R. R.;  Bhattacharyya, S.; Kudgus, R.; Giri, K.; Bhattcharya, R.; Mukherjee, P. Therapeutic Application of Nobel Metal Nanoparticles: From the Past to the Present Day, Chem. Soc. Rev., 2012, 41(7), 2943-70.  


Bhattacharyya,  S.;  Thakter,  R.;  Bhattacharya,  R.;  Mark  A  M.;  Mukherjee,  P. Switching the Targeting Pathways of Therapeutic Antibody by Nanodesign, Angew. Chem. Int. Ed., 2012, 51(7), 1563-67.


Bhattacharyya, S.; Khan, A. J.; Curran, A. J.; Robertson, D.; Bhattacharya, R.; Mukherjee, P.  Efficient Delivery of Gold Nanoparticle by Dual Receptor Targeting, Adv. Mat., 2011, 23 (43), 5034-38.


Haying, J.; Singh, H; Parsons, Z; Lewis, S;  Bhattacharya, S; Seiner, D; LaButti, J; Reilly, T; Tanner, J;  Gates, K. S. The Biological Buffer, Bicarbonate/CO2, Potentiates H2O2-Mediated Inactivation of Protein Tyrosine Phosphatases, J. Am. Chem. Soc., 2011, 133 (40), 15803-805.


Bhattacharyya, S.; Gonzalez, M.; Robertson, D J.; Bhattacharya, R.; Mukherjee, P. A Simple One Step Synthesis of Targeted Drug Delivery System with Enhanced Cytotoxicity, Chem. Comm., 2011, 47 (30), 8530-32.


Bhattacharyya, S.; Bhattacharya, R.; Steven, C.; Mark A M.; Mukherjee, P. Nanoconjugation Modulates the Trafficking and Mechanism of Antibody Induced Receptor Dynamics Endocytosis, Proc. Natl. Acad. Sci. (PNAS USA)., 2010, 107, 33, 14541-54.


Bhattacharyya, S.; Seiner, D.; Gates, K. S. Investigation of Chemical Mechanism and Structural Analysis of PTP1B Inactivation by Chemo preventive agent 1,2-Dithiol-3- thiones , Bioorg. Med. Chem., 2010, 18, 16, 5945-49.





Member of the American Chemical Society (ACS)

Editorial board member of Australasian Medical Journal


Research Interest:


Protein misfolding and neuro degeneration


Protein misfolding has been attributed to trigger various neuro degenerative and neuro muscular disorders such as Alzheimer disease, Parkinson disease, Prion disease and many others. Misfolded protein tends to aggregate and often deposit both inside and outside the cell since they often can’t be processed by proteasomal degradation or cellular clearance and quality control system. Many of this misfolded protein such as tau protein have the ability to spread through synaptic transmission similar to Prion like mechanism. In addition, misfolded protein can also disrupt the cytoskeletal dynamics comprising of microtubule and kinesin motor and give rise to transport deficit. This transport deficit can initiate various neuro muscular disease onsets. Protein misfolding and transport deficit can also trigger pre-mature ageing and subsequent disorders. My lab is interested is to understand the cellular mechanism how various misfolded protein related to many neurodegenerative disease interacts with cytoskeletal element such as microtubule and furthermore, come up with a strategy that can combat various neuronal disorders arising from protein misfolding and cytoskeletal defects.


Formulating smart nano drug delivery system


Nanoparticle drug delivery system and nanoscale formulation has shown quite a bit promise in last decades as a smart design to delivery pharmaceutics by overcoming various therapeutic challenges that are usually faced when a drug is delivered as a single agent. The advantages of nanoformulation include the targeted release of the pharmaceutics payload to the desired tissue although long mileages are waiting for Nanoscience to improve for translational research in order to precise the nanomedicine from bench to bedside. My lab is interested to use nano science primarily for biomedical application such as (1) delivering agent to carry the therapeutic agents to the targeted location and subsequently utilize NIR imaging strategy using formulation chemistry (2) Using nano particles as a self-therapeutics for combating disease besides applying them only as carrier. My lab is mainly interested using gold, iron and sliver metal nanoparticles and polymer nanoparticles such as PEG and PLGA for various drug deliveries and biomedical application such as cancer, neuro disorders including metabolic disorders such as diabetes.